If $z=x+i y, x y \neq 0$, satisfies the equation $z^2+i \bar{z}=0$, then $\left|z^2\right|$ is equal to:
$9$
$1$
$4$
$\frac{1}{4}$
If ${z_1}$ and ${z_2}$ are two non-zero complex numbers such that $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|,$then arg $({z_1}) - $arg $({z_2})$ is equal to
Number of complex numbers $z$ such that $\left| z \right| + z - 3\bar z = 0$ is equal to
Let $z$ satisfy $\left| z \right| = 1$ and $z = 1 - \vec z$.
Statement $1$ : $z$ is a real number
Statement $2$ : Principal argument of $z$ is $\frac{\pi }{3}$
If $arg\, z < 0$ then $arg\, (-z)\, -arg(z)$ is equal to
The set of all $\alpha \in R$, for which $w = \frac{{1 + \left( {1 - 8\alpha } \right)z}}{{1 - z}}$ is a purely imaginary number, for all $z \in C$ satisfying $\left| z \right| = 1$ and ${\mathop{\rm Re}\nolimits} \,z \ne 1$, is