$0.5737373...... = $

  • A

    $\frac{{284}}{{497}}$

  • B

    $\frac{{283}}{{495}}$

  • C

    $\frac{{568}}{{990}}$

  • D

    $\frac{{567}}{{990}}$

Similar Questions

જો ${\text{r}}\,\, > \,\,{\text{1}}$ અને ${\text{x}}\, = \,\,{\text{a}}\, + \,\frac{a}{r}\, + \,\frac{a}{{{r^2}}}\, + \,..\,\,\infty ,\,\,y\, = \,b\, - \,\frac{b}{r}\, + \,\frac{b}{{{r^2}}} - \,..\,\,\,\infty $ અને ${\text{z}}\,\, = \,\,{\text{c}}\, + \,\frac{{\text{c}}}{{{{\text{r}}^{\text{2}}}}}\, + \,\frac{c}{{{r^4}}}\, + \,\,\,\infty ,\,$ હોય, તો $\frac{{{\text{xy}}}}{{\text{z}}}\,\, = \,...$

સમગુણોત્તર શ્રેણીમાં ત્રીજા અને ચોથા પદનો સરવાળો $60$ અને તે શ્રેણીના પ્રથમ ત્રણ પદોનો ગુણાકાર $1000$ છે. જો સમગુણોત્તર શ્રેણીનું પ્રથમ પદ ધન હોય તો સાતમું પદ મેળવો ?

  • [JEE MAIN 2015]

જો ${a_1},{a_2}...,{a_{10}}$ એ સમગુણોત્તર શ્રેણીના પદો હોય અને $\frac{{{a_3}}}{{{a_1}}} = 25$ થાય તો $\frac {{{a_9}}}{{{a_{  5}}}}$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]

જો સમીકરણ $x^5 - 40x^4 + px^3 + qx^2 + rx + s = 0$ના બીજો સમગુણોત્તર શ્રેણીમાં હોય અને તેમના વ્યસ્તનો સરવાળો $10$ થાય તો $\left| s \right|$ ની કિમત મેળવો 

ધારો કે ચાર જુદી જુદી ધન સંખ્યાઓ $a_2$, $a_2$, $a_3$, $a_4$ સમગુણોત્તર શ્રેણીમાં છે. $b_1$ = $a_1$, $b_2$ = $b_1$ + $a_2$, $b_3$ = $b_2$ + $a_3$ અને $b_4$ = $b_3$ + $a_4$ લો.

વિધાન $- I$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સમાંતર શ્રેણીમાં નથી કે સમગુણોત્તરમાં પણ નથી.

વિધાન $- II$ : સંખ્યાઓ $b_1$, $b_2$, $b_3$, $b_4$ સ્વરીત શ્રેણીમાં છે.