$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$=
$\frac{{{3^{11}} - 1}}{{11}}$
$\frac{{{2^{11}} - 1}}{{11}}$
$\frac{{{{11}^3} - 1}}{{11}}$
$\frac{{{{11}^2} - 1}}{{11}}$
श्रेणी $2 .{ }^{20} C _{0}+5 .{ }^{20} C _{1}+8 .{ }^{20} C _{2}+11 .{ }^{20} C _{3}+\ldots +62 .{ }^{20} C _{20}$ का योग बराबर है
यदि $^n{C_r}$ के लिए ${C_r}$ को प्रयुक्त किया जाता हो, तो श्रेणी $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$,
जहाँ $n$ सम धनात्मक पूर्णांक है, का योग होगा
$\left( {\left( {\begin{array}{*{20}{c}}
{21}\\
1
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
1
\end{array}} \right)} \right) + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
2
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
2
\end{array}} \right)} \right)$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
3
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
3
\end{array}} \right)} \right) + \;.\;.\;.$$ + \left( {\left( {\begin{array}{*{20}{c}}
{21}\\
{10}
\end{array}} \right) - \left( {\begin{array}{*{20}{c}}
{10}\\
{10}
\end{array}} \right)} \right)$ का मान है:
$(1+x)^{101}\left(1+x^{2}-x\right)^{100}$ के $x$ की घातों में प्रसार में पदों की संख्या है
माना $(1+ x )^{ n }$ के प्रसार में $x ^{ r }$ का द्विपद गुणांक ${ }^{ n } C _{ r }$ है। यदि $\sum_{ k =0}^{10}\left(2^{2}+3 k \right)= C _{ k }=\alpha .3^{10}+\beta .2^{10}, \alpha$, $\beta \in R$ है, $\alpha+\beta$ बराबर है ............ |