7.Binomial Theorem
hard

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$= . . 

A

$\frac{{{3^{11}} - 1}}{{11}}$

B

$\frac{{{2^{11}} - 1}}{{11}}$

C

$\frac{{{{11}^3} - 1}}{{11}}$

D

$\frac{{{{11}^2} - 1}}{{11}}$

Solution

(a) We have ${(1 + x)^{10}} = {C_0} + {C_1}x + {C_2}{x^2} + … + {C_{10}}{x^{10}}$

Integrating both sides from $0$ to $2$, we get

$\frac{{{3^{11}} – 1}}{{11}} = 2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + …. + \frac{{{2^{11}}}}{{11}}{C_{10}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.