- Home
- Standard 11
- Mathematics
7.Binomial Theorem
hard
$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$= . .
A
$\frac{{{3^{11}} - 1}}{{11}}$
B
$\frac{{{2^{11}} - 1}}{{11}}$
C
$\frac{{{{11}^3} - 1}}{{11}}$
D
$\frac{{{{11}^2} - 1}}{{11}}$
Solution
(a) We have ${(1 + x)^{10}} = {C_0} + {C_1}x + {C_2}{x^2} + … + {C_{10}}{x^{10}}$
Integrating both sides from $0$ to $2$, we get
$\frac{{{3^{11}} – 1}}{{11}} = 2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + …. + \frac{{{2^{11}}}}{{11}}{C_{10}}$.
Standard 11
Mathematics