$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
$a(x + y + z) + b(p + q + r) + c$
$0$
$abc + xyz + pqr$
એકપણ નહી.
નિશ્ચાયકનો ઉપયોગ કરી $(1, 2)$ અને $(3, 6)$ ને જોડતી રેખાનું સમીકરણ શોધો.
જો સુરેખ સમીકરણ સંહિતા
$x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
માટે શૂન્યેતર ઉકેલ $(x, y, z)$ જ્યાં $k \in R$ હોય તો $x +\left(\frac{ y }{ z }\right)$ ની કિમત મેળવો
$\lambda$ ની કેટલી વાસ્તવિક કિમંતો માટે સમીકરણ સંહતિઓ $2 x-3 y+5 z=9$ ; $x+3 y-z=-18$ ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ નો ઉકેલ ખાલીગણ થાય.
$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $
રેખીય સમીકરણની સિસ્ટમ $x + y + z = 2, 2x + 3y + 2z = 5$, $2x + 3y + (a^2 -1)\,z = a + 1$ તો