$\left| {\,\begin{array}{*{20}{c}}{b + c}&{a - b}&a\\{c + a}&{b - c}&b\\{a + b}&{c - a}&c\end{array}\,} \right| = $

  • A

    ${a^3} + {b^3} + {c^3} - 3abc$

  • B

    $3abc - {a^3} - {b^3} - {c^3}$

  • C

    ${a^3} + {b^3} + {c^3} - {a^2}b - {b^2}c - {c^2}a$

  • D

    $(a+b+c)(a^2+b^2+c^2+ab+bc+ca)$

Similar Questions

Evaluate $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \operatorname{csin} \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$

If $\mathrm{a, b, c},$ are in $\mathrm{A.P}$, then the determinant

$\left|\begin{array}{lll}x+2 & x+3 & x+2 a \\ x+3 & x+4 & x+2 b \\ x+4 & x+5 & x+2 c\end{array}\right|$ is

Verify Property $2$ for $\Delta=\left|\begin{array}{ccc}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$

Give the correct order of initials $T$ or $F$ for following statements. Use $T$ if statement is true and $F$ if it is false.

Statement $-1$ : If the graphs of two linear equations in two variables are neither parallel nor the same, then there is a unique solution to the system. Statement $-2$ : If the system of equations $ax + by = 0, cx + dy = 0$ has a non-zero solution, then it has infinitely many solutions.

Statement $-3$ : The system $x + y + z = 1, x = y, y = 1 + z$ is inconsistent. Statement $-4$ : If two of the equations in a system of three linear equations are inconsistent, then the whole system is inconsistent.

The value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\{b + c}&{c + a}&{a + b}\\{b + c - a}&{c + a - b}&{a + b - c}\end{array}\,} \right|$ is