$\left| {\,\begin{array}{*{20}{c}}{11}&{12}&{13}\\{12}&{13}&{14}\\{13}&{14}&{15}\end{array}\,} \right| = $
$1$
$0$
$-1$
$67$
$\left| {\,\begin{array}{*{20}{c}}{a - b}&{b - c}&{c - a}\\{x - y}&{y - z}&{z - x}\\{p - q}&{q - r}&{r - p}\end{array}\,} \right| = $
मानकी $S=\left\{A=\left(\begin{array}{lll}0 & 1 & c \\ 1 & a & d \\ 1 & b & e\end{array}\right): a, b, c, d, e \in\{0,1\}\right.$ और $\left.|A| \in\{-1,1\}\right\}$, जहां $|A|$ आव्यूह (matrix) $A$ के सारणिक (determinant) को दर्शाता है। तब $S$ में अवयवों (elements) की संख्या. . . . . है।
सारणिक $\Delta = \left| {\,\begin{array}{*{20}{c}}{a + x}&b&c\\b&{x + c}&a\\c&a&{x + b}\end{array}\,} \right|$,का गुणनखण्ड होगा
यदि $a,b,c$ धनात्मक वास्तविक संख्यायें हैं, तो $x, y $ और $z$ में निम्नलिखित समीकरण निकाय
$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1$, $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1, - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$
निम्न समीकरण निकाय पर विचार कीजिए : $x+2 y-3 z=a$ ; $2 x+6 y-11 z=b$ ; $x-2 y+7 z=c$ जहाँ $a , b$ तथा $c$ वास्तविक अचर हैं। तो इस समीकरण निकाय: