3 and 4 .Determinants and Matrices
hard

माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ तीन A.P. है, जिनका सार्वअंतर $\mathrm{d}$ है तथा जिनके पहले पद क्रमशः $\mathrm{A}, \mathrm{A}+1, \mathrm{~A}+2$, है। माना $\mathrm{A}_1, \mathrm{~A}_2, \mathrm{~A}_3$ के $7$ वाँ, $9$ वाँ व $17$ वाँ पद क्रमश: $a, b, c$ है तथा $\left|\begin{array}{lll}\mathrm{a} & 7 & 1 \\ 2 \mathrm{~b} & 17 & 1 \\ \mathrm{c} & 17 & 1\end{array}\right|+70=0$ है। यदि $\mathrm{a}=29$, है, तो उस $AP$ जिसका पहला पद $\mathrm{c}-$ $\mathrm{a}-\mathrm{b}$ है तथा सार्वअंतर $\frac{\mathrm{d}}{12}$ है, के प्रथम $20$ पदों का योग बराबर ____________ है।

A

$494$

B

$495$

C

$496$

D

$498$

(JEE MAIN-2023)

Solution

$\left|\begin{array}{lll}A+6 d & 7 & 1 \\ 2(A+1+8 d) & 17 & 1 \\ A+2+16 d & 17 & 1\end{array}\right|+70=0$

$\Rightarrow A=-7 \text { and } d =6$

$\therefore c – a – b =20$

$S _{20}=495$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.