$2\,\,\left| {\,\begin{array}{*{20}{c}}1&1&1\\a&b&c\\{{a^2} - bc}&{{b^2} - ac}&{{c^2} - ab}\end{array}\,} \right| = $
$0$
$1$
$2$
$3abc$
$\left| {\,\begin{array}{*{20}{c}}a&{a + b}&{a + 2b}\\{a + 2b}&a&{a + b}\\{a + b}&{a + 2b}&a\end{array}\,} \right|$ =. . .
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરીને સાબિત કરો : $\left|\begin{array}{ccc}0 & a & -b \\ -a & 0 & -c \\ b & c & 0\end{array}\right|=0$
જો $x, y, z$ ભિન્ન હોય અને $\Delta=\left|\begin{array}{lll}x & x^{2} & 1+x^{2} \\ y & y^{2} & 1+y^{2} \\ z & z^{2} & 1+z^{2}\end{array}\right|=0$ હોય, તો સાબિત કરો કે $1+x y z=0$.
નિશ્ચાયકના ગુણધર્મનો ઉપયોગ કરી સાબિત કરો કે, $\left|\begin{array}{lll}x & x^{2} & 1+p x^{3} \\ y & y^{2} & 1+p y^{3} \\ z & z^{2} & 1+p z^{3}\end{array}\right|=(1+p x y z)(x-y)(y-z)(z-x),$ $p$ અચળ છે.