$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $

  • A

    $0$

  • B

    $abc$

  • C

    $1/abc$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $S\, 'b'$ की उन विभिन्न मानों का समुच्चय है जिनके लिए निम्न रैखिक समीकरण निकाय

$x+y+z=1$

$x+a y+z=1$

$a x+b y+z=0$

का कोई हल नहीं है, तो $S$ :

  • [JEE MAIN 2017]

सारणिकों का मान ज्ञात कीजिए:

$\left|\begin{array}{cc}x^{2}-x+1 & x-1 \\ x+1 & x+1\end{array}\right|$

समीकरण $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ के मूल हैं

सारणिकों का प्रयोग करके $(1,2)$ और $(3,6)$ को मिलाने वाली रेखा का समीकरण ज्ञात कीजिए।

यदि $\alpha ,\beta \ne 0$ तथा $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ तथा

$\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\;$

$= K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ है, तो $K$ बराबर है

  • [JEE MAIN 2014]