माना $\omega$ एक सम्मिश्र संख्या ऐसी है कि $2 w +1=z$ जहाँ $z=\sqrt{-3}$ है। यदि

$\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ है तो $k$ बराबर है:

  • [JEE MAIN 2017]
  • A

    $1$

  • B

    $-z$

  • C

    $z$

  • D

    $-1$

Similar Questions

एक त्रिभुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष $(3,8),(-4,2)$ और $(5,1)$ हैं।

समीकरण $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$  के मूल हैं

यदि $\alpha ,\beta \ne 0$ तथा $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ तथा

$\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\;$

$= K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ है, तो $K$ बराबर है

  • [JEE MAIN 2014]

माना $\alpha, \beta, \gamma$ समीकरण $x ^{3}+ ax ^{2}+ bx + c =0$, $(a, b, c \in R$ तथा $a, b \neq 0)$ के वास्तविक मूल हैं। यदि $u , v , w$ में समीकरण निकाय $\alpha u +\beta v +\gamma w =0$, $\beta u+\gamma v+\alpha w=0 ; \gamma u+\alpha v+\beta w=0$ का अतुच्छ हल है, तो $\frac{a^{2}}{b}$ का मान है

  • [JEE MAIN 2021]

यदि $p + q + r = 0 = a + b + c$, तो सारणिक  $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ का मान है