સમીકરણની સંહતિ ${x_1} + 2{x_2} + 3{x_3} = a2{x_1} + 3{x_2} + {x_3} = $ $b3{x_1} + {x_2} + 2{x_3} = c$ ને . . . ઉકેલ છે.
અનંત ઉકેલ
ખાલીગણ
એકાકી ઉકેલ
એકપણ નહી.
જો $\lambda \in R$ માટે સુરેખ સમીકરણ સહિતા
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$ નો ઉકેલ શક્ય નથી
જો $A\, = \,\left[ \begin{gathered}
1\ \ \ \,1\ \ \ \,2\ \ \ \hfill \\
0\ \ \ \,2\ \ \ \,1\ \ \ \hfill \\
1\ \ \ \,0\ \ \ \,2\ \ \ \hfill \\
\end{gathered} \right]$ અને $A^3 = (aA-I) (bA-I)$,કે જ્યાં $a, b$ એ પૃણાંક છે અને એકમ શ્રેણિક $I$ ની કક્ષા $3 × 3$ હોય તો $(a + b)$ મેળવો.
$\alpha, \beta \in R$ માટે, ધારો કે સુરેખ સમીકરણ સંહતિ $x-y+z=5$ ; $2 x+2 y+\alpha z=8$ ; $3 x-y+4 z=\beta$ ને અસંખ્ય ઉકેલો છે. તો $\alpha$ અને $\beta$ એ $........$ ના બીજ છે.
$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $
જો $n$ એ $x$ ની કિમંતો ની સંખ્યા છે કે જેથી શ્રેણિક
$\Delta (x) =\left[ {\begin{array}{*{20}{c}}
{ - x}&x&2\\
2&x&{ - x}\\
x&{ - 2}&{ - x}
\end{array}} \right]$ એ અસમાન્ય શ્રેણિક હોય $det(\Delta\,(n))$ મેળવો.
$($ કે જ્યાં $det(B)$ એ શ્રેણિક $B$ નો નિશ્ચાયક છે )