${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8} = $

  • A

    $1$

  • B

    $-1$

  • C

    $0$

  • D

    $2$

Similar Questions

જો $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, તો $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}  = . . ..$

$ \cos ^{3}\left(\frac{\pi}{8}\right) \cdot \cos \left(\frac{3 \pi}{8}\right)+\sin ^{3}\left(\frac{\pi}{8}\right) \cdot \sin \left(\frac{3 \pi}{8}\right)$ ની કિમંત મેળવો.

  • [JEE MAIN 2020]

જો $\frac{{\cos x}}{a} = \frac{{\cos (x + \theta )}}{b} = \frac{{\cos (x + 2\theta )}}{c} = \frac{{\cos (x + 3\theta )}}{d} \, ,$ હોય તો  $\left( {\frac{{a + c}}{{b + d}}} \right)$ = 

જો $\sin x + \cos x = \frac{1}{5},$ તો $\tan 2x  = . . .$

જો $\sin A + \cos A = \sqrt 2 ,$ તો ${\cos ^2}A = $