3.Trigonometrical Ratios, Functions and Identities
easy

$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $

A

$\tan 3\theta $

B

$\cot 3\theta $

C

$\tan 6\theta $

D

$\cot 6\theta $

Solution

(c) $\frac{{\sin \,\,3\theta + \sin \,\,5\theta + \sin \,7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos \,7\theta + \cos \,9\theta }}$

$ = \frac{{(\sin \,3\theta + \sin \,9\theta ) + (\sin \,5\theta + \sin \,7\theta )}}{{(\cos \,3\theta + \cos \,9\theta ) + (\cos \,5\theta + \cos \,7\theta )}}$

$ = \frac{{2\,\sin \,6\theta \,\cos \,3\theta + 2\,\sin \,6\theta \,\cos \,\theta }}{{2\,\cos \,6\theta \,\cos \,3\theta + 2\,\cos \,6\theta \,\cos \,\theta }}$

$ = \frac{{2\,\sin \,6\theta \,(\cos \,3\theta + \cos \theta )}}{{2\,\cos \,6\theta \,(\cos \,3\theta + \cos \theta )}}$

$= \tan \,6\theta $.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.