If $\tan A = \frac{{1 - \cos B}}{{\sin B}},$ find $\tan 2A$ in terms of $\tan B$ and show that
$\tan 2A = \tan B$
$\tan 2A = {\tan ^2}B$
$\tan 2A = {\tan ^2}B + 2\tan B$
None of the above
$\sqrt 2 + \sqrt 3 + \sqrt 4 + \sqrt 6 $ is equal to
The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is
$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $
$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is