3.Trigonometrical Ratios, Functions and Identities
easy

$1 + \cos 2x + \cos 4x + \cos 6x = $

A

$2\cos x\cos 2x\cos 3x$

B

$4\sin x\,\cos 2x\cos 3x$

C

$4\cos x\cos 2x\cos 3x$

D

इनमें से कोई नहीं

Solution

(c) $1 + \cos \,\,2x + \cos \,4x + \cos \,6x$

$ = (1 + \cos \,6x) + (\cos \,2x + \cos \,4x)$

$ = 2\,{\cos ^2}3x + 2\,\cos \,3x\,\cos x $

$= 2\,\cos \,3x\,(\cos \,3x + \cos \,x)$

$ = 4\,\cos x\,\cos \,2x\,\cos \,3x$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.