यदि $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$

$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$

तथा  $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ हो, तब

  • A

    $y = z$

  • B

    $y + z = a + c$

  • C

    $y - z = a + c$

  • D

    $y - z = {(a - c)^2} + 4{b^2}$

Similar Questions

$2{\cos ^2}\theta - 2{\sin ^2}\theta = 1$, तो $\theta  =$ ..........$^o$ 

$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $

$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $

  • [IIT 1977]

यदि $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$ तब निम्न में से कौन सा कथन सत्य है

यदि $\cos 3\theta = \alpha \cos \theta + \beta {\cos ^3}\theta ,$ तो $(\alpha ,\beta ) = $