यदि $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$

$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$

तथा  $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ हो, तब

  • A

    $y = z$

  • B

    $y + z = a + c$

  • C

    $y - z = a + c$

  • D

    $y - z = {(a - c)^2} + 4{b^2}$

Similar Questions

यदि $A = 133^\circ ,$ तब $\;2\cos \frac{A}{2} =$

यदि $\sin A + \cos A = \sqrt 2 ,$ तो ${\cos ^2}A = $

निम्नलिखित को सिद्ध कीजिए

$\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

यदि $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ हो, तब 

यदि $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ तब $\cos 2A = $