यदि $A + B + C = \pi ,$ तो $\frac{{\cos A}}{{\sin B\sin C}} + \frac{{\cos B}}{{\sin C\sin A}} + \frac{{\cos C}}{{\sin A\sin B}} = $
$0$
$1$
$2$
$3$
$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $
${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $
$2 \sin \left(\frac{\pi}{8}\right) \sin \left(\frac{2 \pi}{8}\right) \sin \left(\frac{3 \pi}{8}\right) \sin \left(\frac{5 \pi}{8}\right) \sin \left(\frac{6 \pi}{8}\right) \sin \left(\frac{7 \pi}{8}\right)$ का मान है -
यदि $A$ तृतीय चतुर्थांश में स्थित है तथा $3\,\tan A - 4 = 0,$ तब $5\,\sin 2A + 3\,\sin A + 4\,\cos A = $
यदि $2\sec 2\alpha = \tan \beta + \cot \beta ,$ तब $\alpha + \beta $ का निम्न में से एक मान होगा