If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $

  • A

    $\frac{1}{{5\sqrt 2 }}$

  • B

    $\frac{7}{25}$

  • C

    $\frac{4}{5}$

  • D

    $\frac{3}{5}$

Similar Questions

If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to

If $\alpha + \beta = \frac{\pi }{2}$ and $\beta + \gamma = \alpha ,$ then $\tan \,\alpha $ equals

  • [IIT 2001]

If $\cos \,(\theta - \alpha ) = a,\,\,\sin \,(\theta - \beta ) = b,\,\,$then ${\cos ^2}(\alpha - \beta ) + 2ab\,\sin \,(\alpha - \beta )$ is equal to

$\tan \alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot \,8\alpha = $

  • [IIT 1988]

The expression $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ is equal to