3.Trigonometrical Ratios, Functions and Identities
hard

If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $

A

$\frac{1}{{5\sqrt 2 }}$

B

$\frac{7}{25}$

C

$\frac{4}{5}$

D

$\frac{3}{5}$

Solution

(c) $\sin \alpha = \frac{{336}}{{625}}$

==> $\cos \alpha = – \sqrt {1 – {{\sin }^2}\alpha } = – \sqrt {1 – {{\left( {\frac{{336}}{{625}}} \right)}^2}} $, 

                                                  [$\because  \alpha $ is in $II$ Quadrant] 

Now, $\cos \left( {\frac{\alpha }{2}} \right) = – \sqrt {\frac{{1 + \cos \alpha }}{2}} = – \frac{7}{{25}}$,

                                                    [ $\because \frac{\alpha }{2}$ is in $III$ Quadrant]

$\therefore \,\,\,\sin \left( {\frac{\alpha }{4}} \right) = + \sqrt {\frac{{1 – \cos (\alpha /2)}}{2}} = \sqrt {\frac{{1 + \frac{7}{{25}}}}{2}} = \frac{4}{5}$, 

                                                   [ $\because \,\frac{\alpha }{4}$ is in $II$ Quadrant]

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.