$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $
$\tan A$
$\tan 2A$
$\cot A$
$\cot 2A$
$cot\, 7\frac{{{1^0}}}{2}$ $+ tan\, 67 \frac{{{1^0}}}{2} - cot 67 \frac{{{1^0}}}{2} - tan7 \frac{{{1^0}}}{2}$ =
$\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{6 \pi}{7}\right)$ ની કિંમત $\dots\dots$છે.
$\frac{{\tan \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)\,\,\,\cos \,\left( {{\textstyle{{3\,\pi } \over 2}}\,\, - \,\,\alpha } \right)}}{{\cos \,(2\,\pi \,\, - \,\alpha )}}$ $+ cos \left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right) \,sin (\pi -\alpha ) + cos (\pi +\alpha ) sin \,\left( {\alpha \,\, - \,\,\frac{\pi }{2}} \right)$ =
જો $\cos \left( {\alpha + \beta } \right) = \frac{4}{5}$ અને $\sin \left( {\alpha - \beta } \right) = \frac{5}{{13}}$,કે જ્યાં $0 \le \alpha ,\beta \le \frac{\pi }{4}$. તો $\tan 2\alpha $ મેળવો.
જો $\alpha + \beta - \gamma = \pi ,$ તો ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $