જો $\alpha + \beta + \gamma = 2\pi ,$ તો
$\tan \frac{\alpha }{2} + \tan \frac{\beta }{2} + \tan \frac{\gamma }{2} = \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$
$\tan \frac{\alpha }{2}\tan \frac{\beta }{2} + \tan \frac{\beta }{2}\tan \frac{\gamma }{2} + \tan \frac{\gamma }{2}\tan \frac{\alpha }{2} = 1$
$\tan \frac{\alpha }{2} + \tan \frac{\beta }{2} + \tan \frac{\gamma }{2} = - \tan \frac{\alpha }{2}\tan \frac{\beta }{2}\tan \frac{\gamma }{2}$
એકપણ નહિ.
જો $\cos A = \frac{3}{4}$, તો $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
જો $\tan \theta = t,$ તો $\tan 2\theta + \sec 2\theta = $
$\frac{1}{{\sin 10^\circ }} - \frac{{\sqrt 3 }}{{\cos 10^\circ }} =$
$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $
સાબિત કરો કે, $=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$