$\frac{{\tan A + \sec A - 1}}{{\tan A - \sec A + 1}} = $
$\frac{{1 - \sin A}}{{\cos A}}$
$\frac{{1 - \cos A}}{{\sin A}}$
$\frac{{1 + \sin A}}{{\cos A}}$
$\frac{{1 + \cos A}}{{\sin A}}$
$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $
If $\sin \theta+\cos \theta=\frac{1}{2}$, then $16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ is equal to:
The value of $\tan 7\frac{1}{2}^\circ $ is equal to
$1 - 2{\sin ^2}\left( {\frac{\pi }{4} + \theta } \right) = $
If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$