$\frac{{\cos A}}{{1 - \sin A}} = $
$\sec A - \tan A$
${\rm{cosec}}\,A + \cot A$
$\tan \left( {\frac{\pi }{4} - \frac{A}{2}} \right)$
$\tan \left( {\frac{\pi }{4} + \frac{A}{2}} \right)$
જો $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ તો $x + y + z = $
$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $
$cot 5^o$ -$tan5^o$ -$2$ $tan10^o$ -$4$ $tan 20^o$ -$8$ $cot40^o$ =
જો $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $અને $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, તો $\theta$ મેળવો.
જો $\sin 2\theta + \sin 2\phi = 1/2$ અને $\cos 2\theta + \cos 2\phi = 3/2$, તો ${\cos ^2}(\theta - \phi ) = $