જો $\tan \beta = \cos \theta \tan \alpha ,$ તો ${\tan ^2}\frac{\theta }{2} = $
$\frac{{\sin (\alpha + \beta )}}{{\sin (\alpha - \beta )}}$
$\frac{{\cos (\alpha - \beta )}}{{\cos (\alpha + \beta )}}$
$\frac{{\sin (\alpha - \beta )}}{{\sin (\alpha + \beta )}}$
$\frac{{\cos (\alpha + \beta )}}{{\cos (\alpha - \beta )}}$
જો $0 < x < \frac{\pi }{4}.$ તો $\sec 2x - \tan 2x = $
$1 - 2{\sin ^2}\left( {\frac{\pi }{4} + \theta } \right) = $
સાબિત કરો કે, $\tan 3 x \tan 2 x \tan x=\tan 3 x-\tan 2 x-\tan x$
જો $\tan A = \frac{1}{2},$ તો $\tan 3A = $
જો $\sin 6\theta = 32{\cos ^5}\theta \sin \theta - 32{\cos ^3}\theta \sin \theta + 3x,$ તો $x = $