$\tan \frac{A}{2}$ is equal to
$ \pm \sqrt {\frac{{1 - \sin A}}{{1 + \sin A}}} $
$ \pm \sqrt {\frac{{1 + \sin A}}{{1 - \sin A}}} $
$ \pm \sqrt {\frac{{1 - \cos A}}{{1 + \cos A}}} $
$ \pm \sqrt {\frac{{1 + \cos A}}{{1 - \cos A}}} $
In a triangle $ABC,$ the value of $\sin A + \sin B + \sin C$ is
If $\sin \left( {x + \frac{{4\pi }}{9}} \right) = a;\,$ $\frac{\pi }{9}\, < \,x\, < \,\frac{\pi }{3},$ then $\cos \left( {x + \frac{{7\pi }}{9}} \right)$ equals :-
If a $cos^3 \alpha + 3a \,cos\, \alpha \, sin^2\, \alpha = m$ and $asin^3\, \alpha + 3a \, cos^2\, \alpha \,sin\, \alpha = n$ . Then $(m + n)^{2/3} + (m - n)^{2/3}$ is equal to :
Prove that $\frac{\sin x+\sin 3 x}{\cos x+\cos 3 x}=\tan 2 x$
The value of $\tan 7\frac{1}{2}^\circ $ is equal to