- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
easy
Prove that: $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$
Option A
Option B
Option C
Option D
Solution
It is known that
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\therefore$ $L.H.S.$ $=\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}$
$=\frac{2 \sin \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}{2 \cos \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}$
$=\frac{2 \sin 4 x \cdot \cos x}{2 \cos 4 x \cdot \cos x}$
$=\tan 4 x=R . H . S$
Standard 11
Mathematics