3.Trigonometrical Ratios, Functions and Identities
medium

$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $

A

$\cos 2\theta $

B

$cos 3\theta$

C

$\sin 2\theta $

D

$\sin 3\theta $

Solution

(a) We have,$\cos 2(\theta + \phi ) – 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi  $

Now, put $\theta = \phi = \frac{\pi }{4}$

$\cos 2\left( {\frac{\pi }{2}} \right) – 4\cos \left( {\frac{\pi }{2}} \right)\sin \left( {\frac{\pi }{4}} \right)\sin \left( {\frac{\pi }{4}} \right) + 2{\sin ^2}\left( {\frac{{2\pi }}{4}} \right) = 0$

Put $\theta = \phi = \pi /4$  in option $(a)$,

then, $\cos 2\theta = \cos \pi /2 = 0$.

Hence option $(a)$ is correct.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.