$\cos 2(\theta + \phi ) - 4\cos (\theta + \phi )\sin \theta \sin \phi + 2{\sin ^2}\phi = $
$\cos 2\theta $
$cos 3\theta$
$\sin 2\theta $
$\sin 3\theta $
ત્રિકોણ $ABC$ માટે , $\sin 2A + \sin 2B + \sin 2C = . . ..$
$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $
${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8} = $
જો $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ તો $\cos 2A = $
$cos^273^o + cos^247^o + (cos73^o . cos47^o )$ =