સાબિત કરો કે : $\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}=\tan 4 x$
It is known that
$\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\cos A+\cos B=2 \cos \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)$
$\therefore$ $L.H.S.$ $=\frac{\sin 5 x+\sin 3 x}{\cos 5 x+\cos 3 x}$
$=\frac{2 \sin \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}{2 \cos \left(\frac{5 x+3 x}{2}\right) \cdot \cos \left(\frac{5 x-3 x}{2}\right)}$
$=\frac{2 \sin 4 x \cdot \cos x}{2 \cos 4 x \cdot \cos x}$
$=\tan 4 x=R . H . S$
જો $\alpha + \beta - \gamma = \pi ,$ તો ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $
સાબિત કરો કે : $\cos 6 x=32 x \cos ^{6} x-48 \cos ^{4} x+18 \cos ^{2} x-1$
$\frac{{\sec 8A - 1}}{{\sec 4A - 1}} = $
સાબિત કરો કે : $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
જો $\tan \frac{\theta }{2} = t,$ તો $\frac{{1 - {t^2}}}{{1 + {t^2}}} = . . . .$