${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $
$\cos 4A$
$sin 4 A$
$1$
इनमें से कोई नहीं
यदि $\sin \theta + \cos \theta = x,$ तब ${\sin ^6}\theta + {\cos ^6}\theta = \frac{1}{4}[4 - 3{({x^2} - 1)^2}]$ होगा
यदि $\alpha $ समीकरण $25{\cos ^2}\theta + 5\cos \theta - 12 = 0$, $\pi /2 < \alpha < \pi $ का एक मूल हो, तो $\sin 2\alpha $ का मान होगा
$2 \sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)$ बराबर है।
$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $
$\sin ^{2} 2 \theta+\cos ^{4} 2 \theta=\frac{3}{4}$ को संतुष्ट करने वाले $\theta \in\left(0, \frac{\pi}{2}\right)$ के सभी मानों का योग है