3.Trigonometrical Ratios, Functions and Identities
medium

$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $

A

$1$

B

$2$

C

$3$

D

$4$

Solution

(b) ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C$ 

$ = 1 – {\cos ^2}A + 1 – {\cos ^2}B + {\sin ^2}C$

$ = 2 – {\cos ^2}A – \cos (B + C)\cos (B – C)$

$ = 2 – \cos A[\cos A – \cos (B – C)]$

$ = 2 – \cos A[ – \cos (B + C) – \cos (B – C)]$ 

$ = 2 + \cos A.2\cos B\cos C$  

$\therefore$ ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C – 2\cos A\cos B\cos C = 2$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.