$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $
$1$
$2$
$3$
$4$
$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $
If $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ then the value of $\tan \,2A$ in terms of $p$ and $q$ is
If $x = \cos 10^\circ \cos 20^\circ \cos 40^\circ ,$ then the value of $x$ is
If $A + B + C = {180^o},$ then the value of $(\cot B + \cot C)$ $(\cot C + \cot A)\,\,(\cot A + \cot B)$ will be
The value of the expression $(sinx + cosecx)^2 + (cosx + secx)^2 - ( tanx + cotx)^2$ wherever defined is equal to