3.Trigonometrical Ratios, Functions and Identities
easy

If $\tan x = \frac{b}{a},$ then $\sqrt {\frac{{a + b}}{{a - b}}} + \sqrt {\frac{{a - b}}{{a + b}}} = $

A

$\frac{{2\sin x}}{{\sqrt {\sin 2x} }}$

B

$\frac{{2\cos x}}{{\sqrt {\cos 2x} }}$

C

$\frac{{2\cos x}}{{\sqrt {\sin 2x} }}$

D

$\frac{{2\sin x}}{{\sqrt {\cos 2x} }}$

Solution

(b) Given that, $\tan x = \frac{b}{a}$

Now $\sqrt {\frac{{a + b}}{{a – b}}} + \sqrt {\frac{{a – b}}{{a + b}}}$

$= \sqrt {\frac{{1 + b/a}}{{1 – b/a}}} + \sqrt {\frac{{1 – b/a}}{{1 + b/a}}} $

$ = \frac{2}{{\sqrt {1 – \frac{{{b^2}}}{{{a^2}}}} }} = \frac{2}{{\sqrt {1 – {{\tan }^2}x} }} $

$= \frac{2}{{\sqrt {1 – \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}}} }} $

$= \frac{{2\cos x}}{{\sqrt {\cos 2x} }}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.