If $\tan x = \frac{b}{a},$ then $\sqrt {\frac{{a + b}}{{a - b}}} + \sqrt {\frac{{a - b}}{{a + b}}} = $

  • A

    $\frac{{2\sin x}}{{\sqrt {\sin 2x} }}$

  • B

    $\frac{{2\cos x}}{{\sqrt {\cos 2x} }}$

  • C

    $\frac{{2\cos x}}{{\sqrt {\sin 2x} }}$

  • D

    $\frac{{2\sin x}}{{\sqrt {\cos 2x} }}$

Similar Questions

$\tan \alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot \,8\alpha = $

  • [IIT 1988]

Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set $S$ is equal to

  • [IIT 2016]

If $A + B + C = {270^o},$ then $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $

If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is

If $cosA + cosB = cosC,\ sinA + sinB = sinC$ then the value of expression $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ is