$\left( {1 + \cos \frac{\pi }{8}} \right)\,\left( {1 + \cos \frac{{3\pi }}{8}} \right)\,\left( {1 + \cos \frac{{5\pi }}{8}} \right)\,\left( {1 + \cos \frac{{7\pi }}{8}} \right) = $

  • [IIT 1984]
  • A

    $\frac{1}{2}$

  • B

    $\frac{1}{4}$

  • C

    $\frac{1}{8}$

  • D

    $\frac{1}{{16}}$

Similar Questions

If $\cos 3\theta = \alpha \cos \theta + \beta {\cos ^3}\theta ,$ then $(\alpha ,\beta ) = $

$\frac{{\sin 3\theta - \cos 3\theta }}{{\sin \theta + \cos \theta }} + 1 = $

$\tan \frac{A}{2}$ is equal to

If $\alpha $ and $\beta $ are solutions of $sin^2\,x + a\, sin\, x + b = 0$ as well that of $cos^2\,x + c\, cos\, x + d = 0$ , then $sin\,(\alpha + \beta )$ is equal to

Value of $\frac{{4\sin {9^o}\sin {{21}^o}\sin {{39}^o}\sin {{51}^o}\sin {{69}^o}\sin {{81}^o}}}{{\sin {{54}^o}}}$ is equal to