$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ તો $x = $
$ \pm \frac{\pi }{6}$
$ \pm \frac{\pi }{4}$
$\frac{{3\pi }}{2}$
એકપણ નહિ.
સમીકરણ
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
નું સમાધાન કરે તેવી $\theta $ ની $0$ અને $\pi /2$ ની વચ્ચેની કિમત મેળવો.
અહી $S$ એ અંતરાલ $[0,4 \pi]$ માં સમીકરણ $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ ઉકેલનો સરવાળો દર્શાવે છે તો $\frac{8 \mathrm{~S}}{\pi}$ ની કિમંત મેળવો.
જો $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, તો $x = $
જો $0\, \le \,x\, < \frac{\pi }{2},$ તો $x$ ની કિમતો ની સંખ્યા મેળવો ક જેથી સમીકરણ $sin\,x -sin\,2x + sin\,3x=0,$ થાય.
સમીકરણ $\sin (9 x)+\sin (3 x)=0$ ના અંતરાલ $[0,2 \pi]$ માં ઉકેલની સંખ્યા મેળવો.