$xy$-समतल में किसी वर्ग के दो विपरीत शीर्ष $A(-1, 1)$, $B(5, 3)$ हैं, तो वर्ग के अन्य विकर्ण का समीकरण ($A, B$ से न जाने वाला) होगा
$x - 3y + 4 = 0$
$2x - y + 3 = 0$
$y + 3x - 8 = 0$
$x + 2y - 1 = 0$
किसी त्रिभुज $ABC$ की भुजाओं $AB$ तथा $AC$ के लम्ब समद्विभाजकों के समीकरण क्रमश: $x - y + 5 = 0$ व $x + 2y = 0$ हैं। यदि बिन्दु $A$ $(1,\; - \;2)$ हो, तो रेखा $BC$ का समीकरण है
किसी समद्विबाहु त्रिभुज के आधार के दो शीर्ष $(2a,\;0)$ व $(0,\;a)$ हैं। यदि त्रिभुज की एक भुजा $x = 2a$ है, तो दूसरी भुजा का समीकरण है
त्रिभुज, जिसके शीर्ष $A\;(0,\;b),\;B\;(0,\;0)$ व $C\;(a,\;0)$ हैं, की माध्यिकायें $AD$ तथा $BE$ परस्पर लम्बवत् होंगी, यदि
यदि समान्तर चतुभुज के निर्देशांक क्रमश: $(0, 0)$, $(1, 0)$ $(2, 2)$ तथा $(1, 2)$ हैं, तो विकर्णों के बीच कोण है
पाइथागोरस प्रमेय के प्रयोग बिना दिखलाइए कि बिंदु $(4,4),(3,5)$ और $(-1,-1)$ एक समकोण त्रिभुज के शीर्ष हैं।