एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$
$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$
$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$
$=1-\frac{4}{5}$
$=\frac{1}{5}$
Probability that a randomly chosen student reads English newspaper, if she reads Hindi newspaper, is given by $\mathrm{P}(\mathrm{E} | \mathrm{H})$
$\mathrm{P}(\mathrm{E} | \mathrm{H})=\frac{\mathrm{P}(\mathrm{E} \,\cap \,\mathrm{H})}{\mathrm{P}(\mathrm{H})}$
$=\frac{\frac{1}{5}}{\frac{3}{5}}$
$=\frac{1}{3}$
यदि $A, B, C$ कोई तीन घटनायें हैं। यदि $P (S), S$ के घटाने की प्रायिकता है, तो $P\,(A \cap (B \cup C)) = $
एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय $A$ और $B$ हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है :
$P ( A$ के असफल होने की $)=0.2$
$P ( B$ के अकेले असफल होने की $)=0.15$
$P ( A$ और $B$ के असफल होने की $)=0.15$
तो, निम्न प्रायिकताएँ ज्ञात कीजिए :
$P ( A$ के अकेले असफल होने की $)$
$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ -नहीं $)$ का मान ज्ञात कीजिए।
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।
एक पासे को एक बार उछाला जाता है। घटना 'पासे पर प्राप्त संख्या $3$ का अपवर्त्य है', को $E$ से और ' पासे पर प्राप्त संख्या सम है', को $F$ से निरूपित किया जाए तो बताएँ क्या घटनाएँ $E$ और $F$ स्वतंत्र हैं?