एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।

यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\mathrm{P}(\mathrm{H} \cup \mathrm{E})^{\prime}=1-\mathrm{P}(\mathrm{H} \cup \mathrm{E})$

$=1-\{\mathrm{P}(\mathrm{H})+\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{H} \cap \mathrm{E})\}$

$=1-\left(\frac{3}{5}+\frac{2}{5}-\frac{1}{5}\right)$

$=1-\frac{4}{5}$

$=\frac{1}{5}$

Probability that a randomly chosen student reads English newspaper, if she reads Hindi newspaper, is given by $\mathrm{P}(\mathrm{E} | \mathrm{H})$

$\mathrm{P}(\mathrm{E} | \mathrm{H})=\frac{\mathrm{P}(\mathrm{E} \,\cap \,\mathrm{H})}{\mathrm{P}(\mathrm{H})}$

$=\frac{\frac{1}{5}}{\frac{3}{5}}$

$=\frac{1}{3}$

Similar Questions

एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय $A$ और $B$ हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है :

$P ( A$ के असफल होने की $)=0.2$

$P ( B$ के अकेले असफल होने की $)=0.15$

$P ( A$ और $B$ के असफल होने की $)=0.15$

तो, निम्न प्रायिकताएँ ज्ञात कीजिए :

$P ( A$ के अकेले असफल होने की $)$

चार व्यक्तियों के एक लक्ष्य पर ठीक प्रकार से प्रहार करने की प्रायिकताए क्रमश: $\frac{1}{2} \cdot \frac{1}{3}, \frac{1}{4}$ तथा $\frac{1}{8}$ हैं। यदि सभी इस लक्ष्य पर स्वतंत्र रूप से प्रहार करते हैं, तो लक्ष्य पर आघात होने की प्रायिकता है :

  • [JEE MAIN 2019]

$A$ और $B$ स्वतंत्र घटनाएँ दी गई हैं जहाँ $P ( A )=0.3, P ( B )=0.6$ तो $P ( A$ और $B$ में कोई भी नहीं) का मान ज्ञात कीजिए।

किसी प्रतिदर्श समष्टि में दो घटनाओं $A$ और $B$ के लिए

  • [IIT 1991]

$A$ तथा $B$ एक यादृच्छिक प्रयोग की दो घटनाएँ हैं और $P\,(A) = 0.25$, $P\,(B) = 0.5$ तथा $P\,(A \cap B) = 0.15,$ तो $P\,(A \cap \bar B) = $