$A, B, C$ are any three events. If $P (S)$ denotes the probability of $S$ happening then $P\,(A \cap (B \cup C)) = $
$P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$
$P(A) + P(B) + P(C) - P(B)\,P(C)$
$P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$
None of these
$A$ and $B$ are events such that $P(A)=0.42$, $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P (A$ or $B).$
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale, otherwise, it is rejected. Find the probability that a box containing $15$ oranges out of which $12$ are good and $3$ are bad ones will be approved for sale.
Three persons $P, Q$ and $R$ independently try to hit a target . If the probabilities of their hitting the target are $\frac{3}{4},\frac{1}{2}$ and $\frac{5}{8}$ respectively, then the probability that the target is hit by $P$ or $Q$ but not by $R$ is
Fill in the blanks in following table :
$P(A)$ | $P(B)$ | $P(A \cap B)$ | $P (A \cup B)$ |
$\frac {1}{3}$ | $\frac {1}{5}$ | $\frac {1}{15}$ | ........ |
For any two events $A$ and $B$ in a sample space