यदि $A, B, C$ कोई तीन घटनायें हैं। यदि $P (S), S$ के घटाने की प्रायिकता है, तो $P\,(A \cap (B \cup C)) = $
$P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$
$P(A) + P(B) + P(C) - P(B)\,P(C)$
$P(A \cap B) + P(A \cap C) - P(A \cap B \cap C)$
इनमें से कोई नहीं
एक थैले में $5$ सफेद व $4$ काली गेंदें हैं तथा दूसरे थैले में $7$ सफेद व $9$ काली गेंदे हैैं। एक गेंद पहले थैले में से दूसरे थैले में रख दी जाती है और तब दूसरे थैले में से एक गेंद निकाली जाती है तो उसके सफेद होने की प्रायिकता है
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हींदी का अखबार भी पढने वाली होने की प्रायिकता ज्ञात कीजिए।
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह हींदी का अखबार पढती है तो उसके अंग्रेजी का अखबार भी पढ़ने वाली होने की प्रायिकता ज्ञात कीजिए।
दो घटनाओं के घटित होने की प्रायिकताएँ क्रमश: $0.21$ तथा $0.49$ हैं। दोनों के साथ-साथ घटने की प्रायिकता $0.16$ है तब दोनों में से किसी के भी घटित न होने की प्रायिकता है
यदि $A$ और $B$ स्वतंत्र घटनाएँ हैं तो $A$ या $B$ में से न्यूनतम एक के होने की प्रायिकता $=1- P \left( A ^{\prime}\right) P \left( B ^{\prime}\right)$