An electronic assembly consists of two subsystems, say, $A$ and $B$. From previous testing procedures, the following probabilities are assumed to be known :

$\mathrm{P}$ $( A$ fails $)=0.2$

$P(B$ fails alone $)=0.15$

$P(A$ and $ B $ fail $)=0.15$

Evaluate the following probabilities $\mathrm{P}(\mathrm{A}$ fails alone $)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let the event in which $A$ fails and $B $ fails be denote by $E_{A}$ and $E_{B}$.

$P\left(E_{A}\right)=0.2$

$\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)=0.15$

$\mathrm{P}(\mathrm{B} \text { fails alone })=\mathrm{P}\left(\mathrm{E}_{\mathrm{B}}\right)-\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)$

$\therefore $  $ 0.15=P\left(E_{B}\right)-0.15$

$\therefore $ $ \mathrm{P}\left(\mathrm{E}_{\mathrm{B}}\right)=0.3$

$\mathrm{P}$ $(A$ fails alone $)$ $=\mathrm{P}\left(\mathrm{E}_{\mathrm{A}}\right)-\mathrm{P}\left(\mathrm{E}_{\mathrm{A}} \text { and } \mathrm{E}_{\mathrm{B}}\right)$

$=0.2-0.15$

$=0.05$

Similar Questions

India plays two matches each with West Indies and Australia. In any match the probabilities of India getting point $0, 1$ and $2$ are $0.45, 0.05$ and $0.50$ respectively. Assuming that the outcomes are independents, the probability of India getting at least $7$ points is

  • [IIT 1992]

$A$ and $B$ are two events such that $P(A)=0.54$, $P(B)=0.69$ and $P(A \cap B)=0.35.$ Find $P \left( B \cap A ^{\prime}\right)$.

For the three events $A, B$ and $C, P$ (exactly one of the events $A$ or $B$ occurs) = $P$ (exactly one of the events $B$ or $C$ occurs)= $P$ (exactly one of the events $C$ or $A$ occurs)= $p$ and $P$ (all the three events occur simultaneously) $ = {p^2},$ where $0 < p < 1/2$. Then the probability of at least one of the three events $A, B$ and $C$ occurring is

  • [IIT 1996]

Let $A$ and $B$ be two events such that $P\overline {(A \cup B)} = \frac{1}{6},P(A \cap B) = \frac{1}{4}$ and $P(\bar A) = \frac{1}{4},$ where $\bar A$ stands for complement of event $A$. Then events $A$ and $B$ are

  • [AIEEE 2005]

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that One of them is black and other is red.