Urn $A$ contains $6$ red and $4$ black balls and urn $B$ contains $4$ red and $6$ black balls. One ball is drawn at random from urn $A$ and placed in urn $B$. Then one ball is drawn at random from urn $B$ and placed in urn $A$. If one ball is now drawn at random from urn $A$, the probability that it is found to be red, is
$\frac{{32}}{{55}}$
$\frac{{21}}{{55}}$
$\frac{{19}}{{55}}$
None of these
If $P\,(A) = 0.4,\,\,P\,(B) = x,\,\,P\,(A \cup B) = 0.7$ and the events $A$ and $B$ are mutually exclusive, then $x = $
Let $\mathrm{E}$ and $\mathrm{F}$ be events with $\mathrm{P}(\mathrm{E})=\frac{3}{5}, \mathrm{P}(\mathrm{F})$ $=\frac{3}{10}$ and $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\frac{1}{5} .$ Are $\mathrm{E}$ and $\mathrm{F}$ independent ?
If $A$ and $B$ are any two events, then the probability that exactly one of them occur is
Probability of solving specific problem independently by $A$ and $B$ are $\frac{1}{2}$ and $\frac{1}{3}$ respectively. If both try to solve the problem independently, find the probability that the problem is solved.
A die is loaded in such a way that each odd number is twice as likely to occur as each even number. If $E$ is the event that a number greater than or equal to $4$ occurs on a single toss of the die then $P(E)$ is equal to