In class $XI$ of a school $40\%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.

Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$

$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$

$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$

We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$

$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$

Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.

Similar Questions

In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.

Given two independent events $A$ and $B$ such $P(A)=0.3,\, P(B)=0.6 .$ Find $P(A $ and not $B)$

The probability that $A$ speaks truth is $\frac{4}{5}$, while this probability for $B$ is $\frac{3}{4}$. The probability that they contradict each other when asked to speak on a fact

  • [IIT 1975]

If from each of the three boxes containing $3$ white and $1$ black, $2$ white and $2$ black, $1$ white and $3$ black balls, one ball is drawn at random, then the probability that $2$ white and $1$ black ball will be drawn is

  • [IIT 1998]

$A$ and $B$ are events such that $P(A)=0.42$,  $P(B)=0.48$ and $P(A$ and $B)=0.16 .$ Determine $P ($ not $A ).$