In class $XI$ of a school $40\%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.
Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$
$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$
$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$
We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$
$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$
Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.
Let $A$,$B$ and $C$ be three events such that $P\left( {A \cap \bar B \cap \bar C} \right) = 0.6$, $P\left( A \right) = 0.8$ and $P\left( {\bar A \cap B \cap C} \right) = 0.1$, then the value of $P$(atleast two among $A$,$B$ and $C$ ) equals
If $A$ and $B$ are any two events, then the probability that exactly one of them occur is
Four persons can hit a target correctly with probabilities $\frac{1}{2},\frac{1}{3},\frac{1}{4}$ and $\frac {1}{8}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is
The probability that a student will pass the final examination in both English and Hindi is $0.5$ and the probability of passing neither is $0.1$. If the probability of passing the English examination is $0.75$, what is the probability of passing the Hindi examination?
$\mathrm{A}$ die is thrown. If $\mathrm{E}$ is the event $'$ the number appearing is a multiple of $3'$ and $F$ be the event $'$ the number appearing is even $^{\prime}$ then find whether $E$ and $F$ are independent ?