In class $XI$ of a school $40\%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.

Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$

$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$

$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$

We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$

$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$

Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.

Similar Questions

Let $X$ and $Y$ are two events such that $P(X \cup Y=P)\,(X \cap Y).$

Statement $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$

Statement $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$

  • [AIEEE 2012]

Two balls are drawn at random with replacement from a box containing $10$ black and $8$ red balls. Find the probability that First ball is black and second is red.

If $A$ and $B$ are two independent events, then the probability of occurrence of at least one of $\mathrm{A}$ and $\mathrm{B}$ is given by $1 -\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$

The probabilities of occurrence of two events are respectively $0.21$ and $0.49$. The probability that both occurs simultaneously is $0.16$. Then the probability that none of the two occurs is

If $A$ and $B$ are any two events, then the probability that exactly one of them occur is

  • [IIT 1984]