In class $XI$ of a school $40\%$ of the students study Mathematics and $30 \%$ study Biology. $10 \%$ of the class study both Mathematics and Biology. If a student is selected at random from the class, find the probability that he will be studying Mathematics or Biology.
Let $A$ be the event in which the selected student studies Mathematics and $B$ be the event in which the selected student studies Biology.
Accordingly, $P ( A )=40 \%=\frac{40}{100}=\frac{2}{5}$
$P(B)=30 \%=\frac{30}{100}=\frac{3}{10}$
$P ( A$ and $B )=10 \%=\frac{10}{100}=\frac{1}{10}$
We know that $P ( A$ and $B )= P ( A )+ P ( B )- P ( A $ and $B )$
$\therefore P(A $ or $ B)=\frac{2}{5}+\frac{3}{10}+\frac{1}{10}=\frac{6}{10}=0.6$
Thus, the probability that the selected student will be studying Mathematics or Biology is $0.6$.
Let $A$ and $B$ be independent events with $P(A)=0.3$ and $P(B)=0.4$. Find $P(A \cap B)$
$A$ and $B$ are two independent events. The probability that both $A$ and $B$ occur is $\frac{1}{6}$ and the probability that neither of them occurs is $\frac{1}{3}$. Then the probability of the two events are respectively
An integer is chosen at random from the integers $\{1,2,3, \ldots \ldots . .50\}$. The probability that the chosen integer is a multiple of atleast one of $4,6$ and $7$ is
A die is thrown. Let $A$ be the event that the number obtained is greater than $3.$ Let $B$ be the event that the number obtained is less than $5.$ Then $P\left( {A \cup B} \right)$ is
For an event, odds against is $6 : 5$. The probability that event does not occur, is