10-2.Transmission of Heat
medium

$R$ અને $2R$ ત્રિજયાના નળાકાર સમઅક્ષીય મૂકેલા છે.તેમની ઉષ્મા વાહકતા $K_1$ અને $K_2$ છે,તો સમતુલ્ય ઉષ્મા વાહકતા શોધો.

A

$ {K_1} + {K_2} $

B

$ \frac{{{K_1}{K_2}}}{{{K_1} + {K_2}}} $

C

$ \frac{{{K_1} + 3{K_2}}}{4} $

D

$ \frac{{3{K_1} + {K_2}}}{4} $

(IIT-1988)

Solution

(c) Both the cylinders are in parallel, for the heat flow from one end as shown.

Hence ${K_{eq}} = \frac{{{K_1}{A_1} + {K_2}{A_2}}}{{{A_1} + {A_2}}}$; where $A_1$

= Area of cross-section of inner cylinder = $\pi$ $R_2$ and ${A_2} = $Area of cross-section of cylindrical shell $ = \pi \{ {(2R)^2} – {(R)^2}\} = 3\pi {R^2}$

$\Rightarrow {K_{eq}} = \frac{{{K_1}(\pi {R^2}) + {K_2}(3\pi {R^2})}}{{\pi {R^2} + 3\pi {R^2}}} = \frac{{{K_1} + 3{K_2}}}{4}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.