આકૃતિમાં કોઈ વસ્તુ માટે વિદ્યુતક્ષેત્ર $E_{(r)}$ વિરુદ્ધ કોઈ બિંદુના તે વસ્તુના કેન્દ્રથી અંતર $(r)$ માટેનો આલેખ છે, તેથી......

115-109

  • A

    આ વસ્તુ વિદ્યુતભારિત વાહક નક્કર ઘન હોવો જોઇએ.

  • B

    આ વસ્તુ સમાન કદ વિદ્યુતભાર ઘનતા ધરાવતો નક્કરગોળો હોવો જોઇએ.

  • C

    આ વસ્તુ સમાન કદ વિદ્યુતભાર ઘનતા ધરાવતો નક્કર ઘન હોવો જોઇએ.

  • D

    આ વસ્તુ વિદ્યુતભારિત વાહક નક્કરગોળો હોવો જોઇએ.

Similar Questions

$+\sigma_{\mathrm{s}} \mathrm{C} / \mathrm{m}^2$ જેટલી નિયમિત પૃષ્ઠ વિદ્યુતભાર ધનતા ધરાવતી એક અનંત સમતલ તક્તિને $x-y$ સમતલમાં મૂકવામાં આવે છે. બીજા એક $+\lambda_{\mathrm{e}} \mathrm{C} / \mathrm{m}$ જેટલી નિયમિત રેખીય વિધુતભાર ધનતા ધરાવતા અનંત લંબાઈના લાંબા તાર ને $z=4 \mathrm{~m}$ સમતલ અને $y$-અક્ષને સમાંતર રાખવામાં આવે છે. જો મૂલ્યોમાં $\left|\sigma_s\right|=2\left|\lambda_{\mathrm{e}}\right|$ હોય તો $(0,0,2)$ સ્થાન આગળ તક્તિ ( પૃષ્ઠ) વિદ્યુતભાર અને રેખીય વિધુત ભાર ને કારણે મળતા વિધુતક્ષેત્રનાં મૂલ્યોનો ગુણોતર. . . . . છે.

  • [JEE MAIN 2024]

 $12 \,cm$ ત્રિજ્યાના એક ગોળાકાર સુવાહકની સપાટી પર $1.6 \times 10^{-7} \;C$ વિદ્યુતભાર નિયમિત રીતે વિતરિત થયેલો છે.

$(a)$ ગોળાની અંદર

$(b)$ ગોળાની તરત બહાર

$(c)$ ગોળાના કેન્દ્રથી $18 \,cm$ અંતરે આવેલા બિંદુએ - વિદ્યુતક્ષેત્ર કેટલું છે?

ગાઉસના પ્રમેય પરથી કુલંબનો નિયમ સમજાવો.

એક પોલા વિધુતભારિત સુવાહકની સપાટી પર એક નાનું છિદ્ર કાપેલ છે. દર્શાવો કે તે છિદ્રમાં વિધુતક્ષેત્ર $\left( {\sigma /2{\varepsilon _0}} \right)\hat n$ છે. જ્યાં, ${\hat n}$ બહાર તરફની લંબ દિશામનો એકમ સદિશ છે. અને $\sigma $ છિદ્રની નજીક વિધુતભારની પૃષ્ઠઘનતા છે.

$R$ ત્રિજયાના ગોળા પર $2Q$ જેટલો કુલ વિદ્યુતભાર છે જેની વિદ્યુતભાર ઘનતા $\rho(r) = kr$ જ્યાં $r$ એ કેન્દ્રથી અંતર છે. બે વિદ્યુતભાર $A$અને $B$ જેનો વિદ્યુતભાર $-Q$ છે તેને ગોળાના વ્યાસ પર કેન્દ્ર થી સમાન અંતર પર છે. જો $A$ અને $B$ પર કોઈ બળ લાગતું ના હોય તો.....

  • [JEE MAIN 2019]