$\lambda$ વિદ્યુતભાર ઘનતા ધરાવતા બે લાંબા પાતળા વિદ્યુતભારીત સળિયાને એકબીજને સમાંતર $d$ અંતરે મૂકવામાં આવ્યા છે. એક સળીયા બીજા સળીયા પર એકમ લંબાઈ દીઠ લાગતું બળ કેટલું હશે? $\left(\right.$ જ્યાં $\left.k=\frac{1}{4 \pi \varepsilon_0}\right)$
$\frac{k 2 \lambda}{d}$
$\frac{k 2 \lambda^2}{d}$
$\frac{k 2 \lambda}{d^2}$
$\frac{k 2 \lambda^2}{d^2}$
પોલા વાહક ગોળાની સપાટી પર $10\,\mu C$ વિધુતભાર આપવામાં આવે છે. જો ત્રિજ્યા $2\, m$ હોય, તો કેન્દ્ર પર વિદ્યુતક્ષેત્ર કેટલા........$\mu \,C{m^{ - 2}}$ થાય?
જો બંધ સપાટી વડે ઘેરાતો વિધુતભાર શૂન્ય હોય, તો તે સપાટી પરના દરેક સ્થાને વિધુતક્ષેત્ર શૂન્ય હોવાનું સૂચવે છે ? બીજી બાજુ જો સપાટી પરના દરેક સ્થાને વિધુતક્ષેત્ર શૂન્ય હોય તો બંધ સપાટી વડે ઘેરાતો ચોખ્ખો (પરિણામી) વિધુતભાર શૂન્ય હોવાનું સૂચવે છે ?
$R$ ત્રિજ્યા ધરાવતા વાહક ગોળામાં વિધુતભાર સમાન રીતે વિતરિત કરેલ છે તો કેન્દ્ર $x$ અંતર ($x < R$) માટે વિધુતક્ષેત્ર કોના સમપ્રમાણમાં હોય ?
$R$ ત્રિજયા ધરાવતા વિદ્યુતભારીત વાહક ગોળીય કવચના કેન્દ્રથી $\frac{{3R}}{2}$ અંતરે વિદ્યુતક્ષેત્ર $E\; V/m$ છે. તેના કેન્દ્રથી $\frac{R}{2}$ અંતરે વિદ્યુતક્ષેત્ર કેટલું થાય?
એક ગોળા પર એકસમાન વિજભાર પથરાયેલ છે તેની વિજભાર ઘનતા નીચે મુજબ આપવામાં આવે છે.
$\rho (r)\, = \,{\rho _0}\left( {1 - \frac{r}{R}} \right)$, $r < R$ માટે
$\rho (r)\,=\,0$, $r\, \ge \,R$ માટે
જ્યાં $r$ એ વિજભાર વિતરણના કેન્દ્રથી અંતર અને $\rho _0$ અચળાંક છે. $(r < R)$ ના અંદરના બિંદુ પાસે વિદ્યુતક્ષેત્ર કેટલું મળે?