આકૃતીમાં દર્શાવ્યા મુજબ ત્રણ અનંત લંબાઇથી પ્લેટોને મુકેલ છે તો $P$ બિંદુ આગળ વિદ્યુત ક્ષેત્ર....
$\frac{{2\sigma }}{{{\varepsilon _o}}}\,\hat k$
$ - \,\frac{{2\sigma }}{{{\varepsilon _o}}}\,\hat k$
$\frac{{4\sigma }}{{{\varepsilon _o}}}\,\hat k$
$ - \,\frac{{4\sigma }}{{{\varepsilon _o}}}\,\hat k$
$ + \lambda \,C/m$ અને $ - \lambda \,C/m$ના બે સમાંતર અનંત રેખીય વિધુતભારો કે જે રેખીય વિજભાર ઘનતા ધરાવે છે તેઓને મુક્ત અવકાશમાં એક બીજાથી $2R$ અંતરે મુકેલ છે. આ બે રેખીય વિજભારની મધ્યમાં વિદ્યુતક્ષેત્ર કેટલું હશે ?
$q$ વિદ્યુતભાર સાથે $r\, (r < R)$ ના વિદ્યુતભારીત ગોળીય વાહકના કેન્દ્રથી $r$ (અંતરે $R$) આવેલા બિંદુ આગળ વિદ્યુતક્ષેત્રની તીવ્રતા ....... હશે.
સમાન વિદ્યુતભારતી ગોળીય કવચના $q_1$ અને $q_2$ ખંડને લીધે $P$ બિંદુ આગળ ચોખ્ખું વિદ્યુતક્ષેત્ર ...... છે. $( C $ એ કવચનું કેન્દ્ર આપેલ છે.$)$
$10\ cm$ ત્રિજયા ધરાવતા ગોળાથી $20\ cm$ અંતરે વિદ્યુતક્ષેત્ર $100\ V/m$ છે.તો કેન્દ્રથી $3\ cm$ અંતરે વિદ્યુતક્ષેત્ર કેટલા .....$V/m$ થાય?
$R$ ત્રિજયાના ગોળીય કવચમાં કેન્દ્રથી અંતર નો વિદ્યુતક્ષેત્ર $E$ વિરુધ્ધનો આલેખ કેવો થાય?