1. Electric Charges and Fields
medium

 $12 \,cm$ ત્રિજ્યાના એક ગોળાકાર સુવાહકની સપાટી પર $1.6 \times 10^{-7} \;C$ વિદ્યુતભાર નિયમિત રીતે વિતરિત થયેલો છે.

$(a)$ ગોળાની અંદર

$(b)$ ગોળાની તરત બહાર

$(c)$ ગોળાના કેન્દ્રથી $18 \,cm$ અંતરે આવેલા બિંદુએ - વિદ્યુતક્ષેત્ર કેટલું છે?

Option A
Option B
Option C
Option D

Solution

$(a)$ Radius of the spherical conductor, $r=12 \,cm =0.12\, m$

Charge is uniformly distributed over the conductor, $q=1.6 \times 10^{-7}\, C$

Electric field inside a spherical conductor is zero. This is because if there is field inside the conductor, then charges will move to neutralize it.

$(b)$ Electric field $E$ just outside the conductor is given by the relation. $E=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r^{2}}$

Where, $\varepsilon_{0}=$ Permittivity of free space and $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9}\, Nm ^{2} \,C ^{-2}$

Therefore, $E =\frac{9 \times 10^{9} \times 1.6 \times 10^{-7}}{(0.12)^{2}}=10^{5} \,N\, C^{-1}$

Therefore, the electric field just outside the sphere is $10^{5} \,N\, C^{-1}$

$(c)$ Electric field at a point $18\, m$ from the centre of the sphere $= E _{1}$ Distance of the point from the centre, $d =18 \,cm =0.18\, m$

$E_{1}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{d^{2}}=\frac{9 \times 10^{9} \times 1.6 \times 10^{-7}}{\left(1.8 \times 10^{-2}\right)^{2}}$$=4.4 \times 10^{4} \,N\,C ^{-1}$

Therefore, the electric field at a point $18\, cm$ from the centre of the sphere is $4.4 \times 10^{4} \,N\, C^{-1}$

Standard 12
Physics

Similar Questions

$(a)$ દર્શાવો કે સ્થિરવિધુતક્ષેત્રના લંબ ઘટકનું, વિધુતભારિત સપાટીની એકબાજુથી બીજી બાજુ સુધી અસતતપણું 

$\left( E _{2}- E _{1}\right) \cdot \hat{ n }=\frac{\sigma}{\varepsilon_{0}}$

દ્વારા અપાય છે. જ્યાં, ${\hat n}$ તે બિંદુએ સપાટીને લંબ એકમ સદિશ છે. $\sigma $ તે બિંદુએ વિધુતભારની પૃષ્ઠ ઘનતા છે. ( ${\hat n}$ ની દિશા બાજુ $1$ થી $2$ બાજુ  તરફ છે. ) આ પરથી દર્શવો કે સુવાહકની તરત બહાર વિધુતક્ષેત્ર ${\sigma \hat n/{\varepsilon _0}}$ છે. 

$(b)$ દર્શાવો કે સ્થિતવિદ્યુત ક્ષેત્રનો સ્પર્શીય $(Tangential)$ ઘટક, વિદ્યુતભારિત સપાટીની એક બાજુથી બીજી બાજુ સુધી સતત હોય છે. [ સૂચનઃ $(a)$ માટે ગોસના નિયમનો ઉપયોગ કરો. $(b)$ માટે સ્થિત વિદ્યુત ક્ષેત્ર વડે બંધ ગાળા પર કરેલું કાર્ય શૂન્ય છે તે હકીકતનો ઉપયોગ કરો. ]

medium

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.