- Home
- Standard 11
- Physics
સદીશ $\mathop {\text{A}}\limits^ \to \,\, = \,\,4\hat i\,\, + \;\,3\hat j\,\, + \;\,6\hat k$ અને $\mathop B\limits^ \to \,\, = \,\, - \hat i\,\, + \;\,3\hat j\,\, - \,\,8\hat k$ નો પરિણમી સદીશ એ એક્મ સદીશને સમાંતર હોય તો ,$\vec R$ ........
$\frac{1}{7}\,\,\left( {3\hat i\,\, + \;\,6j\,\, - \,\,2\hat k} \right)$
$\frac{1}{7}\,\,\left( {3\hat i\,\, + \;\,6j\,\, + \,\,2\hat k} \right)$
$\frac{1}{{49}}\,\,\left( {3\hat i\,\, + \;\,6\hat j\,\, + \;\;2\hat k} \right)$
$\frac{1}{{49}}\,\,\left( {3\hat i\,\, + \;\,6\hat j\,\, - \;\;2\hat k} \right)$
Solution
$\mathop {\text{A}}\limits^ \to $ અને $\mathop {\text{B}}\limits^ \to $ પરિણામી સદીશ $\mathop {\text{R}}\limits^ \to \,\, = \,\,\mathop {\text{A}}\limits^ \to \,\, + \,\,\mathop {\text{B}}\limits^ \to $
$ = \,\,4\hat i\,\, + \;\,3\hat j\,\, + \;\,6\hat k\,\, – \,\,1\hat i\,\, + \;\,3\hat j\,\, – \,\,8\hat k\,\,\,\, \Rightarrow \,\,\mathop {\text{R}}\limits^ \to $
$3\hat i\,\, + \;\,6\hat j\,\, – \,\,2\hat k$
$\mathop {\text{R}}\limits^ \to \,\, = \,\,\frac{{\mathop {\text{R}}\limits^ \to }}{{|\mathop {\text{R}}\limits^ \to |}}\,\, = \,\,\frac{{3\hat i\,\, + \;\,6\hat j\,\, – \,\,2\hat k}}{7}$