$ABC$ એ સમબાજુ ત્રિકોણ છે. દરેક બાજુની લંબાઈ $'a'$ અને તેનું પરિકેન્દ્ર $O$ છે. તો $\overrightarrow{A B}+\overrightarrow{B C}+\overrightarrow{C A}=.......$
$0$
$1$
$2$
$3$
બે સદિશોના મૂલ્ય $5\, N$ અને $12 \,N$ વચ્ચેનો ખૂણો કેટલો રાખવાથી પરિણામી સદિશનું મૂલ્ય અનુક્રમે $17\, N$, $7\, N$ અને $13\, N$ મળે?
$\overrightarrow A \, = \,3\widehat i\, + \,2\widehat j$ , $\overrightarrow B \, = \widehat {\,i} + \widehat j - 2\widehat k$ છે, તો તેમનો સરવાળો બૈજિક રીતે કરો.
જયારે સદિશ $\overrightarrow{ A }=2 \hat{i}+3 \hat{j}+2 \hat{k}$ ને બીજા એક સદિશ $\overrightarrow{ B }$ માંથી બાદ કરવામાં આવે છે ત્યારે તે $2 \hat{j}$ સદિશ જેટલું મૂલ્ય આપે છે. તો સદિશ $\overrightarrow{B}$ નું માન $............$ હશે.
કોઈ કણ પર એકજ સમતલમાં ઓછામાં ઓછા કેટલા બળ લાગવા જોઈએ કે જેથી તેમનું પરિણામી બળ શૂન્ય આવે?
જો $\vec P , \vec Q $ અને $\vec R $ ના મૂલ્યો $5$,$12$ અને $13$ એકમ છે અને જો $\vec P + \vec Q =\vec R $ હોય તો $\vec Q $ અને $\vec R $ વચ્ચેનો ખૂણો ........ હોય