જો $ \overrightarrow A ,\,\overrightarrow B $ and $ \overrightarrow C $ ના મૂલ્ય $12, 5$ અને $13$ હોય અને $ \overrightarrow A + \overrightarrow B = \overrightarrow C $ , તો સદિશ $ \overrightarrow A $ અને $ \overrightarrow B $ વચ્ચેનો ખૂણો કેટલો હશે?
$0$
$ \pi $
$ \pi /2 $
$ \pi /4 $
બે બળોના મૂલ્યોનો સરવાળો $18 \,N$ છે.અને $12 \,N$ પરિણામી મૂલ્ય એ નાના મૂલ્યના બળને લંબ છે.તો બંને બળોના મૂલ્યો કેટલા થશે?
$\overrightarrow{a}$ થી $\overrightarrow{f}$ સુધીના છ સદિશોના મૂલ્યો અને દિશાઓ આકૃતિમાં દર્શાવેલા છે. નીચેનામાંથી કયું વિધાન તેમના વિશે સાચું છે?
$a$ બાજુ ધરાવતા ઘનમાં, ફલક (સપાટી) $ABOD$ ના કેન્દ્ર આગળથી ફલક $BEFO$ ના કેન્દ્ર સુધી (આકૃતિમાં દર્શાવ્યા અનુસાર) દોરેલ સદિશ કયો હશે.
જો $\vec P , \vec Q $ અને $\vec R $ ના મૂલ્યો $5$,$12$ અને $13$ એકમ છે અને જો $\vec P + \vec Q =\vec R $ હોય તો $\vec Q $ અને $\vec R $ વચ્ચેનો ખૂણો ........ હોય
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.