બે સમાન મૂલ્ય વાળા બળોના પરિણામનો વર્ગ એ તેમના ત્રણ ગણા ગુણાકારના મૂલ્યને સમાન હોય તો તેમના વચ્ચેનો ખૂણો ........ $^o$ હશે .
$0$
$45$
$60$
$90$
જો $\vec{P}+\vec{Q}=\vec{P}-\vec{Q}$, હોય તો,
બે બળોના મૂલ્યોનો સરવાળો $18 \,N$ છે.અને $12 \,N$ પરિણામી મૂલ્ય એ નાના મૂલ્યના બળને લંબ છે.તો બંને બળોના મૂલ્યો કેટલા થશે?
બે સદિશોના મૂલ્યો અનુક્રમે $8$ એકમ અને $6$ એકમ છે. જો આ બે સદિશો વચ્ચેનો ખૂણો
$(i)\,\theta = 0^o$,$(ii)\,\theta = 180^o$ $(iii)\,\theta = 90^o$ $(iv)\,\theta = 120^o$ હોય, તો આ સદિશના પરિણામી સદિશનું મૂલ્ય જણાવો.
બે સદિશોના સરવાળા માટે સમાંતરબાજુ ચતુષ્કોણની રીત સમજાવો. સમજાવો કે આ રીત ત્રિકોણની રીતને સમતુલ્ય છે.
કોઈ સદિશ $\vec A $ માથી એક નવો સદિશ $\vec B$ મેળવવા માટે તેને $\Delta \theta$ રેડિયન $( \Delta \theta << 1)$ જેટલું કોણાવર્તન કરાવવામાં આવે છે. તો આ કિસ્સામાં $\left| {\vec B - \vec A} \right|$ શું થશે?