સમાન બાજુ ધરાવતાં અષ્ટકોણ $ABCDEFGH$ માટે $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ નો સરવાળો કેટલો હશે, જો $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$ હોય ?
$-16 \hat{i}-24 \hat{j}+32 \hat{k}$
$16 \hat{i}+24 \hat{j}-32 \hat{k}$
$16 \hat{i}+24 \hat{j}+32 \hat{k}$
$16 \hat{i}-24 \hat{j}+32 \hat{k}$
એક ખુલ્લા મેદાનમાં એક કારચાલક એવો રસ્તો પકડે છે કે જે દરેક $500$ મીટર અંતર બાદ તેની ડાબી બાજુ $60^{°}$ ના ખૂણે વળાંક લે છે. એક વળાંકથી શરૂ કરી, કારચાલકના ત્રીજા, છઠ્ઠા તથા આઠમા વળાંક પાસે સ્થાનાંતર શોધો. આ દરેક સ્થિતિમાં કારચાલકની કુલ પથ લંબાઈની તેના સ્થાનાંતરના માન સાથે તુલના કરો.
બે સદિશ $\vec X$ અને $\vec Y$ સમાન માન ધરાવે છે. $(\vec X - \vec Y)$ નું માન એ $(\vec X + \vec Y)$ ના માન કરતા $n$ ગણું છે. $\vec X$ અને $\vec Y$ વચ્ચેનો ખૂણો કેટલો હશે?
બે સદીશો $\mathop A\limits^ \to \,$ અને $\mathop B\limits^ \to \,$ હોય તો , $\mathop A\limits^ \to \, + \mathop B\limits^ \to \,\,\, = \,\,\mathop C\limits^ \to $ અને ${A^2}\,\, + \;\,{B^2}\,\, = {C^2}$ છે . નીચેના માંથી ક્યું વિધાન સાચું છે .
એક પદાર્થ પર બે બળો કે જેમના મૂલ્યો અનુક્રમે $3N$ અને $4N$ હોય તેવા બળો લાગે છે. જો તેમના વચ્ચેનેા ખૂણો $180^°$ હોય તો તેમનું પરિણામી બળ.........$N$
$x$ એકમ સમાન મૂલ્યના અને એકબીજાને $45^o$ ના ખૂણે રહેલા બે સદિશો નો પરિણામી સદિશ $\sqrt {\left( {2 + \sqrt 2 } \right)} $ એકમ હોય. તો $x$ નું મૂલ્ય શું થાય?