સમાન બાજુ ધરાવતાં અષ્ટકોણ $ABCDEFGH$ માટે $\overrightarrow{ AB }+\overrightarrow{ AC }+\overrightarrow{ AD }+\overrightarrow{ AE }+\overrightarrow{ AF }+\overrightarrow{ AG }+\overrightarrow{ AH }$ નો સરવાળો કેટલો હશે, જો $\overrightarrow{ AO }=2 \hat{ i }+3 \hat{ j }-4 \hat{ k }$ હોય ?
$-16 \hat{i}-24 \hat{j}+32 \hat{k}$
$16 \hat{i}+24 \hat{j}-32 \hat{k}$
$16 \hat{i}+24 \hat{j}+32 \hat{k}$
$16 \hat{i}-24 \hat{j}+32 \hat{k}$
બે સદિશો $\mathop A\limits^ \to $ અને $\mathop B\limits^ \to $ વચ્ચેનો ખૂણો $\theta $ કેટલો હોવો જોઈએ જેથી પરિણામી સદિશ $\mathop R\limits^ \to $ નું મૂલ્ય મહત્તમ મળે.
નીચે દર્શાવેલ અસમતાઓ ભૌમિતિક કે અન્ય કોઈ રીતે સાબિત કરો :
$(a)$ $\quad| a + b | \leq| a |+| b |$
$(b)$ $\quad| a + b | \geq| a |-| b |$
$(c)$ $\quad| a - b | \leq| a |+| b |$
$(d)$ $\quad| a - b | \geq| a |-| b |$
તેમાં સમતાનું ચિહ્ન ક્યારે લાગુ પડે છે ?
$\overrightarrow{a}$ થી $\overrightarrow{f}$ સુધીના છ સદિશોના મૂલ્યો અને દિશાઓ આકૃતિમાં દર્શાવેલા છે. નીચેનામાંથી કયું વિધાન તેમના વિશે સાચું છે?
બે સદિશો $\overrightarrow A $ અને $\overrightarrow B $ નો પરિણામી સદિશ $\overrightarrow R$ છે, તો $\overrightarrow {\left| R \right|} \,...\,\overrightarrow {\left| A \right|} \, + \,\overrightarrow {\left| B \right|} $
કયા ખૂણે બે બળો $(x + y)$ અને $(x - y) $ એ પ્રક્રિયા કરે છે. તેથી તેમનું પરિણામી લગભગ $\sqrt {\left( {{x^2}\,\, + \;\,{y^2}} \right)} $ મળે ?